Symmetric Pattern Based Word Embeddings for Improved Word Similarity Prediction
نویسندگان
چکیده
We present a novel word level vector representation based on symmetric patterns (SPs). For this aim we automatically acquire SPs (e.g., “X and Y”) from a large corpus of plain text, and generate vectors where each coordinate represents the cooccurrence in SPs of the represented word with another word of the vocabulary. Our representation has three advantages over existing alternatives: First, being based on symmetric word relationships, it is highly suitable for word similarity prediction. Particularly, on the SimLex999 word similarity dataset, our model achieves a Spearman’s ρ score of 0.517, compared to 0.462 of the state-of-the-art word2vec model. Interestingly, our model performs exceptionally well on verbs, outperforming stateof-the-art baselines by 20.2–41.5%. Second, pattern features can be adapted to the needs of a target NLP application. For example, we show that we can easily control whether the embeddings derived from SPs deem antonym pairs (e.g. (big,small)) as similar or dissimilar, an important distinction for tasks such as word classification and sentiment analysis. Finally, we show that a simple combination of the word similarity scores generated by our method and by word2vec results in a superior predictive power over that of each individual model, scoring as high as 0.563 in Spearman’s ρ on SimLex999. This emphasizes the differences between the signals captured by each of the models.
منابع مشابه
Semantic Information Extraction for Improved Word Embeddings
Word embeddings have recently proven useful in a number of different applications that deal with natural language. Such embeddings succinctly reflect semantic similarities between words based on their sentence-internal contexts in large corpora. In this paper, we show that information extraction techniques provide valuable additional evidence of semantic relationships that can be exploited when...
متن کاملSub-Word Similarity based Search for Embeddings: Inducing Rare-Word Embeddings for Word Similarity Tasks and Language Modelling
Training good word embeddings requires large amounts of data. Out-of-vocabulary words will still be encountered at test-time, leaving these words without embeddings. To overcome this lack of embeddings for rare words, existing methods leverage morphological features to generate embeddings. While the existing methods use computationally-intensive rule-based (Soricut and Och, 2015) or tool-based ...
متن کاملInjecting Word Embeddings with Another Language's Resource : An Application of Bilingual Embeddings
Word embeddings learned from text corpus can be improved by injecting knowledge from external resources, while at the same time also specializing them for similarity or relatedness. These knowledge resources (like WordNet, Paraphrase Database) may not exist for all languages. In this work we introduce a method to inject word embeddings of a language with knowledge resource of another language b...
متن کاملExploring Semantic Representation in Brain Activity Using Word Embeddings
In this paper, we utilize distributed word representations (i.e., word embeddings) to analyse the representation of semantics in brain activity. The brain activity data were recorded using functional magnetic resonance imaging (fMRI) when subjects were viewing words. First, we analysed the functional selectivity of different cortex areas by calculating the correlations between neural responses ...
متن کاملDual Embeddings and Metrics for Relational Similarity
Abstract. In this work, we study the problem of relational similarity by combining different word embeddings learned from different types of contexts. The word2vec model with linear bag-ofwords contexts can capture more topical and less functional similarity, while the dependency-based word embeddings with syntactic contexts can capture more functional and less topical similarity. We explore to...
متن کامل